"Нейтронные звезды". Отрывок из книги

15 июня 2023
ИЗДАНИЕ

Глава 4. Зомби и звездотрясения

Радиопульсары: крутящиеся галактические колеса

Когда Джоселин Белл открыла четыре пульсара LGM, они казались маленькими зелеными человечками, разбросанными по небу, которые вращаются в космическом одиночестве. Эти радиопульсары расходуют на излучение собственную энергию вращения. С тех пор обнаружено более 2700* радиопульсаров, главным образом в Млечном Пути. Излучение таких пульсаров достаточно слабое, и наши радиотелескопы не могут обнаружить те из них, что находятся гораздо дальше. Сверхмедленный пульсар Тана — тоже один из таких радиопульсаров. Источником излучения вращающегося пульсара служат частицы, уносимые с ускорением вдоль линии, соединяющей его магнитные полюса. Когда такой поток частиц пересекает луч зрения телескопа, мы регистрируем всплеск1.

Радиопульсары бывают либо одиночными, либо они являются компонентами двойных звезд, то есть систем из двух звезд, связанных друг с другом гравитационным взаимодействием и обращающихся вокруг общего центра масс. Излучая, пульсары теряют энергию, все больше и больше "устают" и потому вращаются все медленнее и медленнее. Как и у самого медленного пульсара Тана, их излучение обычно соответствует радиодиапазону, хотя некоторые из пульсаров бывают источниками рентгеновского и гамма-излучения. Редко встречаются "чудища" (их называют слабыми рентгеновскими одиночными нейтронными звездами — сокращенно X—DIN или XINS, X-ray Dim Isolated Neutron Stars), которые излучают только в рентгеновском диапазоне, что необычно для одиночных пульсаров. Таких обнаружено пока только семь, их прозвали "Великолепная семерка". Что это на самом деле — загадка. Может, мы просто не видим исходящие от них радиоволны, поскольку эти потоки радиоизлучения не направлены на нас. Или, возможно, они чрезвычайно узкие, так что вероятность их пересечения с лучом зрения телескопа очень мала. Представьте, что кто-то рядом с вами размахивает лазерной указкой. Вероятность, что ее узконаправленный луч будет светить вам прямо в глаза, очень мала.

Еще до открытия первого пульсара итальянский астроном Франко Пачини предположил, что быстро вращающиеся нейтронные звезды могут испускать радиоволны. Однако это должно сопровождаться множеством различных физических процессов. Начинается все с того, что материнская звезда передает своему потомку не только вращение, но и магнитный поток (составляющая магнитного поля, перпендикулярная заданной поверхности). Так нейтронная звезда обзаводится магнитным полем. Хотя у пульсара, как и у намагниченного бруска, который показывают на уроке физики в школе, есть два магнитных полюса, магнитные линии пульсара ведут себя совсем не так. Магнитные линии бруска выходят из южного полюса и идут к северному, откуда они выходят опять, образуя непрерывные, бесконечные замкнутые контуры.

Когда нейтронная звезда вращается, силовые линии магнитного поля тоже вращаются одновременно с ней — они привязаны к поверхности, как бороздки на вращающейся граммофонной пластинке. И, как ребенок на карусели, чем дальше от звезды, тем быстрее они вращаются. Но бесконечно скорость вращения увеличиваться не может: при каком-то радиусе она становится больше скорости света. В этот момент совместное вращение силовых линий и звезды заканчивается — в противном случае силовые линии поля будут двигаться быстрее скорости света, что невозможно.

Эта виртуальная граница, за которой совместное вращение невозможно, называется световым цилиндром. Любая магнитная силовая линия, не умещающаяся под световым цилиндром, остается незамкнутой. Излучение расходится внутри конуса, ограниченного последними замкнутыми силовыми линиями, заканчивающимися на световом цилиндре. Световой цилиндр имеет каждый вращающийся магнит, включая Землю. Но магнитное поле Земли достаточно слабое — на поверхности оно меняется от 0,25 до 0,65 гаусса, и концы цилиндра так далеко, что никакой роли он не играет. Однако магнитное поле нейтронной звезды настолько мощное, что это действительно важно.

Эти открытые силовые линии могут ускорять частицы, как мотор. Вблизи двух магнитных полюсов они срывают с поверхности нейтронной звезды лавину частиц. Эти частицы, главным образом электроны, обладающие большой энергией, несутся вдоль открытых силовых линий внутри узких конусообразных пучков, не обязательно направленных вдоль оси вращения пульсара. Взаимодействуя с магнитными силовыми линиями, частицы ускоряются и испускают радиоволны, распространяющиеся в космосе в том же направлении, что и движущиеся частицы. Пульсар можно заметить, если один из несущихся через пространство потоков направлен в сторону Земли. Как уже говорилось раньше, пульсар, наподобие морского маяка, испускает лучи непрерывно, но он вращается вокруг своей оси, и поэтому мы видим повторяющиеся вспышки света.

Со временем, по мере того как все больше и больше частиц уносится с поверхности нейтронной звезды, пульсар замедляется. В какой-то момент лишенный энергии пульсар начинает вращаться слишком медленно, магнитные силовые линии уже не могут срывать электроны с поверхности нейтронной звезды, и излучение должно будет прекратиться. Считается, что примерно 965 лет назад, когда пульсар в Крабовидной туманности был молод, его период вращения составлял шестнадцать миллисекунд. Сегодня он равен тридцати трем миллисекундам, и пульсар продолжает замедляться, а его период увеличивается примерно на 1,3 миллисекунды в столетие. Чем сильнее начальное магнитное поле, тем быстрее замедляется пульсар. Магнитное поле молодых пульсаров порядка 1012–1013 гауссов. (Для сравнения: магнитное поле магнитика, который вешают на холодильник, порядка ста гауссов.) Такой пульсар остается активным от десяти до ста миллионов лет. Это значит, что из всех нейтронных звезд, рожденных за 13,7 миллиарда лет существования Вселенной, около 99% не излучают в радиодиапазоне: даже если они продолжают медленно вращаться, свет их маяков погас. Они пересекли линию смерти и растворились в небытии космоса, перебравшись на кладбище нейтронных звезд.

Аккрецирующие пульсары: голодные зомби

Не все радиопульсары так и остаются мертвыми. У некоторых есть звезды-компаньоны, связанные с ними гравитационными силами; перетягивая на себя вещество компаньона, радиопульсары могут "восстать из могилы". Ученые называют их раскрученными миллисекундными пульсарами.

Для Нидерландов 29 декабря 2016 года выдалось необычно снежным и холодным. Оставалось еще несколько месяцев до того, как на суперкомпьютер Гронингенского университета поступят данные от самого медленного пульсара, но LOFAR все же удалось преподнести астрономам запоздалый рождественский подарок. Кес Басса, сотрудник Нидерландского института радиоастрономии, решил проверить последние показания LOFAR: в конце концов, телескоп не ушел на каникулы, так что поиск пульсаров продолжался. Сидя в спальне и привычно просматривая свежие данные, Басса неожиданно заметил на сигнале пик — возможно, пульсар, который, в отличие от других пульсаров, вращается с невероятно большой скоростью. Это было очень интересно, и, несмотря на выходные дни, Басса отправил электронное письмо своему коллеге Джейсону Хесселсу из Амстердамского университета. Тема письма звучала интригующе: "Поздоровайся с..." Когда Хесселс открыл письмо и увидел данные, каникулы закончились уже у двоих.

Среди всех обнаруженных пульсаров новый пульсар, теперь его называют PSR J0952–0607, занимает второе место по скорости вращения. Он почти догнал "рекордсмена", обнаруженного Хесселсом двенадцатью годами ранее, в 2004-м (подробнее об этом открытии будет рассказано в главе 5). Периоды вращения обоих пульсаров измеряются миллисекундами: представьте себе пульсар Басса в виде шара размером с Вашингтон, вращающегося со скоростью 707 оборотов в секунду. Хесселс рассказывает: "Когда я прочел письмо Басса, то еще даже до всяких проверок понял: все правильно. Я был чрезвычайно возбужден, ведь последние пятнадцать лет это один из самых интересных для меня вопросов. Поэтому, хоть я и был в отпуске, но, услышав о таком невероятном событии, немедленно все бросил. Ни о чем другом думать не мог — это один из самых захватывающих этапов работы". Торжествовал Хесселс не один: потрясающей новостью он поделился с женой и семилетней дочкой Димфи. Хесселс рассказывает: "Я сказал Димфи, что вот есть такая новая звезда и она совершенно особенная, поскольку вращается так быстро, что голова может очень, очень сильно закружиться". Димфи в восторге начала кружиться: "Вот так, папочка? Я нейтронная звезда?"

Вращающиеся так быстро пульсары называются миллисекундными. Первый такой пульсар открыл американский астрофизик Дональд Чарльз Баккер в 1982 году, после того как его магистрант Шри Кулкарни обработал данные телескопа Arecibo. Этот пульсар, получивший название PSR B1937+21, вращается необыкновенно быстро — в двадцать раз быстрее пульсара в Крабовидной туманности. Совершая 642 оборота в секунду, он удерживал рекорд скорости более двух десятилетий.

K настоящему времени астрономы обнаружили более трехсот** миллисекундных пульсаров, большинство из которых находится в галактическом диске Млечного Пути. Их плотность максимальна внутри шаровых звездных скоплений, содержащих большое число тесно связанных гравитацией старых звезд. В таких скоплениях могут быть сотни тысяч, иногда даже миллионы звезд, но и тогда только около 5% из них — миллисекундные пульсары.

В отличие от радиопульсаров, совершающих в одиночестве несколько оборотов в секунду, миллисекундные пульсары обычно обнаруживают в паре с другой звездой, чаще всего с белым карликом. Однако не всегда звездная пара существовала в таком виде. Подобные двойные системы исходно состоят из пары обычных звезд, безмятежно обращающихся друг относительно друга. В какой-то момент более массивная звезда расходует все свое ядерное топливо. Она вспыхивает сверхновой, оставляя вместо себя нейтронную звезду. Если система "выживает" при взрыве сверхновой, то есть ни нейтронная звезда, ни ее компаньон не выбывают из системы, они будут продолжать обращаться вокруг общего центра масс, причем пульсар излучает энергию в виде радиоволн (иногда еще и рентгеновское и гамма-излучение) и вращается все медленнее. За время своей жизни этот пульсар может замедлиться настолько, что замолчит — умрет, и наши телескопы больше не смогут его видеть.

Миллиарды лет спустя истечет срок жизни и компаньона пульсара — обычной звезды меньшей массы. Звезда начнет раздуваться и превратится в красный гигант. Вот тут-то становится действительно интересно. Раздуваясь, звезда приближается к своему компаньону — замолкшему пульсару. В какой-то момент она приблизится настолько, что излучение пульсара начнет разогревать поверхность красного гиганта — и вещество с нее будет улетучиваться. Когда такое происходит, из материала спутника пульсара формируется струя, направленная на мертвого друга, благодаря чему вокруг нейтронной звезды образуется диск из захваченного вещества. Этот процесс называется "аккреция". Его можно описать так. Аккреционный диск напоминает горячий пончик. Разбухшее тесто — вещество, из которого он состоит, — стекает через отверстие, напоминающее слив ванной, и закручивается вокруг нейтронной звезды, постепенно оседая на ее поверхности. Перетекание вещества на нейтронную звезду до какой-то степени уменьшает ее магнитное поле, хотя до конца этот процесс не понимает никто.

В результате аккреции нейтронной звезде передается угловой момент, что заставляет ее вращаться быстрее. Можно сказать, что компаньон нейтронной звезды вдыхает в нее новую жизнь. Падающее на нейтронную звезду вещество взаимодействует с ее магнитным полем. Если магнитное поле достаточно велико, чтобы преодолеть силу гравитации, горячая газовая плазма удерживается вдоль магнитных силовых линий и впоследствии начинает стекать к магнитным полюсам нейтронной звезды. Тогда нейтронная звезда формирует горячие аккреционные пятна (обычно их называют просто "горячие пятна") непосредственно в области магнитных полюсов — что-то вроде горба или горы поверх полюсов. Горячие пятна начинают излучать в рентгеновском диапазоне, и с этого момента пульсар опять можно обнаружить, при условии, что горячее пятно оказывается в поле зрения наших рентгеновских телескопов. Такая система называется маломассивной рентгеновской двойной системой, или LMXB (Low Mass X-ray Binary), поскольку компаньон, передающий вещество на нейтронную звезду, изначально был звездой малой массы наподобие Солнца, а пульсар излучает рентгеновские лучи2.

С тех пор в Млечном Пути обнаружили около двух сотен LMXB, тринадцать из них в шаровых звездных скоплениях. Их можно наблюдать с помощью космических рентгеновских телескопов, таких как Chandra и XMM. Но открытие этих систем началось с пуска ракеты.

Шел 1949 год. Детектор рентгеновских лучей установили на переделанной ракете "Фау-2", запущенной с ракетного полигона Уайт-Сэндс в штате Нью-Мексико. Вынесенный за пределы атмосферы ракетой, детектор был предназначен для регистрации рентгеновского излучения Солнца. Астрономы подозревали, что и наша собственная звезда является источником рентгеновского излучения. Они знали, что рентгеновское излучение должно поглощаться атмосферой, но ожидали, что звезды и другие космические тела вроде нашего Солнца, содержащие очень горячие газы при температурах от миллиона до ста миллионов кельвинов, испускают рентгеновские лучи. Считалось, что рентгеновское излучение Солнца должно быть существенно слабее видимого света, исходящего от нашей звезды, и, по мнению астрономов, именно поэтому им никак не удастся обнаружить рентгеновское излучение более далеких звезд.

В 1962 году они поняли, что это предположение было неверным. Итальянский астрофизик Риккардо Джаккони установил детектор рентгеновского излучения на ракете Aerobee 150. Она стартовала 12 июня 1962 года, и тогда впервые удалось наблюдать космическое рентгеновское излучение источника, который, без сомнения, находился вне Солнечной системы. Сейчас этот источник известен как Скорпион X-1. Хотя он расположен гораздо дальше Солнца, его излучение в сто тысяч раз интенсивнее полного излучения Солнца во всем диапазоне длин волн. Стало очевидно, что Скорпион X-1 — не звезда. Кроме того, детектор Джаккони показал, что рентгеновское излучение заполняет всю Вселенную. Началась эра рентгеновской астрономии.

Точно так же как в середине шестидесятых Джоселин Белл терпеливо вбивала столбы в грязь Кембриджшира, советский астроном Иосиф Шкловский упорно анализировал рентгеновские и оптические данные Скорпиона X-1. Согласно его гипотезе, источником излучения была нейтронная звезда, аккрецирующая вещество своей звезды-компаньона. В то время нейтронные звезды существовали только в теории, но позже Белл обнаружила первый пульсар LGM-1 и трех его "кузенов". Вскоре подтвердилось, что Скорпион X-1 — двойная рентгеновская звезда, а конкретнее — LMXB. До сих пор это все еще самый яркий из известных источников рентгеновского излучения на небе.

В 1970 году группа Джаккони запустила спутник Uhuru — первую орбитальную рентгеновскую обсерваторию. Позже эта обсерватория обнаружила первого кандидата на роль черной дыры. На самом деле Uhuru — неофициальное название космического телескопа SAS-1 (Small Astronomy Satellite — 1, "маленький астрономический спутник — 1"). Но название Uhuru прижилось: на суахили это слово означает "свобода", а запустили спутник с итальянского космодрома Сан-Марко в Кении в день независимости страны. Позднее Джаккони работал с Einstein X-ray Observatory (Рентгеновская обсерватория имени Эйнштейна) — первым рентгеновским телескопом, позволявшим получать изображение источника, запущенным в 1978 году, а затем и с его преемником телескопом Chandra — космической рентгеновской обсерваторией, запущенной в 1999 году3. "В то время оборудование было совсем не таким фантастическим, как сейчас, так что получить от Chandra или XMM столь же качественные рентгеновские изображения, как сегодня, не удавалось, — рассказывает Дэвид Бакли из Южноафриканской астрономической обсерватории в Кейптауне. — Мы знали только, что в некоторой области неба есть рентгеновские источники и отыскать их оптические аналоги совсем непросто. Некоторые даже использовали старомодные фотографические пластинки, когда искали на небе голубые и переменные объекты".

Одним из первых источников рентгеновского излучения, идентифицированных как двойная система, стал Лебедь X-1. Свое название он получил в соответствии с принятым тогда общим правилом: открытые источники рентгеновского излучения астрономы называли по имени созвездия, где источник был обнаружен, и добавляли букву X, указывающую на то, что это рентгеновский источник. Постепенно от этого правила отказались, поскольку обнаруженные источники исчислялись миллионами. Сегодня неожиданные вспышки рентгеновского излучения ищут такие современные детекторы, как INTEGRAL, Swift, NICER и Maxi (прибор для мониторинга рентгеновского изображения всего неба, разработанный японскими учеными и установленный на Международной космической станции).

Помимо LMXB бывают и нейтронные звезды другого типа, излучающие в рентгеновском диапазоне. Если в двойной системе компаньон нейтронной звезды имеет промежуточную массу, систему называют рентгеновской двойной системой промежуточной массы, или IMXB (Intermediate Mass X-ray Binary). Если масса звезды-компаньона превосходит массу Солнца более чем в десять раз, мы имеем дело с рентгеновской двойной массивной системой, или HMXB (High Mass X-ray Binary). В последнем случае одна из звезд взрывается сверхновой и становится нейтронной звездой. Хотя ее компаньон — чрезвычайно яркая звезда, испускающая звездный ветер благодаря давлению излучения, вещество, захваченное нейтронной звездой, не образует аккреционный диск, а прямо оседает на ее поверхности. В рентгеновское излучение преобразуется энергия ветра. HMXB можно увидеть и в оптическом диапазоне, где доминирует излучение массивной звезды. Однако не все HMXB содержат нейтронную звезду: иногда на ее месте может быть черная дыра.

Однако системы LMXB, пожалуй, самые необычные, поскольку считается, что именно они были прародителями сверхбыстрых и очень, очень старых пульсаров4.

По мере нарастания аккреции вещество звезды-компаньона, перетекающее на нейтронную звезду, приводит к ослабеванию ее магнитного поля. Когда оно уменьшается до 108 гауссов, аккрецируемое вещество оказывается так близко к поверхности, что, передавая угловой момент пульсару, может ускорить его вращение настолько, что оно станет миллисекундным. По окончании аккреции рентгеновское излучение, источником которого был аккреционный диск, прекращается: теперь это опять миллисекундный радиопульсар в стадии так называемого раскручивания. Комбинация ослабленного магнитного поля и ускоренного вращения приводит к увеличению времени жизни пульсара. Видимый пульсар существует от десяти до ста миллионов лет, а возраст такой нейтронной звезды — более миллиарда лет, сопоставимо с возрастом Вселенной. Привет тебе, дважды умерший — "зомби в квадрате" — остаток ядра некогда массивной звезды, превратившийся в очень старый радиопульсар.

Тем временем компаньон миллисекундного пульсара превращается в белый карлик. Либо он остается белым карликом, либо сильный ветер высокоэнергетических частиц пульсара уносит прочь вещество соседней звезды. Такое происходит, если пульсар нагревает своего компаньона до температуры, вдвое превышающей температуру поверхности Солнца, и постепенно разрушает его. Именно поэтому некоторые пульсары не входят в двойные системы, а существуют "в гордом одиночестве". Их называют "черными вдовами" по аналогии с самками одноименных пауков, пожирающими своих супругов. К таким пульсарам относится, например, первый миллисекундный пульсар, открытый Баккером. На данный момент обнаружено восемнадцать таких пульсаров в Млечном Пути и еще несколько в шаровых звездных скоплениях, принадлежащих нашей Галактике***. У некоторых из них компаньонов нет, тогда как спутниками других являются звезды чрезвычайно малой массы. Именно такого типа систему обнаружил Басса: масса белого карлика, компаньона пульсара, составляла всего 2% от массы Солнца. Очевидно, что большую часть массы он потерял из-за соседства с очень "голодным" пульсаром. Когда спутник пульсара имеет чуть большую массу, но все еще явно сражается за свое выживание, пульсар, опять используя аналогию с пауками, называют "австралийской вдовой"5.

Тогда как миллисекундные пульсары обычно излучают радиоволны, некоторые из них не могут решиться на что-то определенное и периодически излучают то в радио-, то в рентгеновском диапазоне. Такие странные создания получили название "переходные миллисекундные пульсары". В 2008 году группа из Амстердамского университета под руководством Энн Арчибальд с помощью телескопа Green Bank в Западной Вирджинии открыла новый радиопульсар, известный сейчас как PSR J1023+0038. Когда Энн и ее коллеги обратились к архивным данным, стало ясно, что за восемь лет до того ровно в этом же месте видели в оптическом диапазоне нейтронную звезду, окруженную аккреционным диском. Они начали непрерывное наблюдение нового пульсара с помощью телескопов Lovell, Arecibo, Green Bank и Westerbork. Пульсар был виден до июня 2013 года, а затем внезапно исчез. Через несколько недель снова появился аккреционный диск и звезда опять стала видна в оптическом диапазоне. Благодаря аккреционному диску она была очень яркой. Позднее наблюдения, выполненные в обоих участках спектра с помощью космических рентгеновских обсерваторий и оптических телескопов на Земле, показали, что система попеременно переключается с "радиовещания" на другие частоты, излучая в рентгеновском диапазоне, когда происходит аккреция вещества и пульсар становится виден в участке спектра, доступном невооруженному глазу6.

Очень редко такие двойные системы состоят из двух пульсирующих нейтронных звезд. К настоящему моменту известна только одна такая система — двойной пульсар (PSR J0737—3039A/B). Хотя всплески более медленного пульсара, так называемого пульсара B, не фиксировались с 2008 года, его миллисекундный партнер А все еще благополучно излучает радиоволны7.


* По состоянию на сентябрь 2022 года известно более 3300 пульсаров. — Прим. науч. ред.

** По данным на сентябрь 2022 года, известно около пятисот миллисекундных пульсаров, то есть пульсаров с периодом менее десяти миллисекунд. — Прим. науч. ред.

*** По состоянию на сентябрь 2022 года всего известно более сорока таких пульсаров. — Прим. науч. ред.

1 W. Becker, G. Pavlov. Pulsars and Isolated Neutron Stars. ArXiv pre-print service, Aug. 19, 2002.

2 R. N. Manchester. Millisecond Pulsars.

3 M. Matsuoka, K. Asai. Simplified Picture of Low-Mass X-Ray Binaries Based on Data from Aquila X-1 and 4U 1608–52. Publications of the Astronomical Society of Japan. 65, no. 2 (Apr. 25, 2013): 26.

4 Там же.

5 F. Reddy. With a Deadly Embrace, ’Spidery’ Pulsars Consume Their Mates. Goddard Space Flight Center, NASA, Aug. 7, 2017./

6 A. Archibald. The End of Accretion: The X-Ray Binary / Millisecond Pulsar Transition Object PSR J 1023 + 0038. APS Physics. (Apr. 2015).

7 Unique Double Pulsar Tests Einstein's Theory. News release, Jodrell Bank Centre for Astrophysics, The University of Manchester.